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ABSTRACT
In this paper, we propose and develop a novel approach to
the problem of optimally managing the tax, and more gener-
ally debt, collections processes at financial institutions. Our
approach is based on the framework of constrained Markov
Decision Process (MDP), and is unique in the way it tightly
couples data modeling and optimization techniques. We re-
port on our experience in an actual deployment of a tax
collections optimization system based on the proposed ap-
proach, at New York State Department of Taxation and Fi-
nance. We also validate the competitive advantage of the
proposed methodology using other data sets in a related ap-
plication domain.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Constrained Markov Decision Process, Reinforcement Learn-
ing, Debt collection, Business analytics and optimization

1. INTRODUCTION
The problem of optimally managing the collections pro-

cess by taxation authorities is one of prime importance, not
only for the revenue it brings but also as a means to ad-
minister a fair taxing system. The analogous problem of
debt collections management in the private sector, such as
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banks and credit card companies, is also increasingly gain-
ing attention. With the recent successes in the applications
of data analytics and optimization to various business areas,
the question arises to what extent such collections processes
can be improved by use of leading edge data modeling and
optimization techniques. In this paper, we propose and de-
velop a novel approach to this problem based on the frame-
work of constrained Markov Decision Process (MDP), and
report on our experience in an actual deployment of a tax
collections optimization system at New York State Depart-
ment of Taxation and Finance (NYS DTF).

The tax/debt collections process is complex in nature and
its optimal management will need to take into account a
variety of considerations. At a high level, the collections
process management problem is that of determining the an-
swers to the following questions: (1) which of the debtors
should be approached; (2) which of the possible collection
actions are to be taken onto them; (3) who should take those
actions; and (4) when they should be taken. The answer to
each of these questions will depend on a number of factors.
The answer to the first question will depend on the infor-
mation the collection agency may have on the debtors, such
as the demographics and the amount of debt owed. The
answer to the second will also depend on the nature and
status of the debtor, such as how collectible they appear to
be, since actions of varying severity may be appropriate for
debtors in different categories. The third will additionally
depend on what resources are available within the collection
organization. With regard to the fourth, there are several
complications that impact the optimal timing to take ac-
tions on debtors. For example, in the tax collection case,
there are certain legal requirements that govern the sequen-
tial course of collection actions. The prime example is the
requirement that a warrant need be issued before collection
actions such as levy and seizure are performed. Also, there
are business considerations that affect the appropriate tim-
ing of a collections action in general.

Due to the high complexity involved in the collection pro-
cess, and particularly because of the legal and business con-
straints, it is common practice to follow rigid manually con-
structed rules to guide the collection activities. Even in
state-of-the-art rule based systems for collections, the role
of data analytics is typically limited to that of augmenting
the rules engine with scoring functions that they can refer
to. In the present work, we develop a collection process au-



tomation system that is primarily based on data modeling
and optimization, and accepts input from a rules engine as
constraints on the optimization process.

Specifically, we propose a novel approach based on the
framework of constrained Markov Decision Processes (MDP),
which addresses all of the considerations that were touched
upon in the foregoing discussion. The MDP formulation
is particularly applicable here because of its treatment of
the sequential dependencies between actions via the intro-
duction of states. For example, the legal requirement that a
warrant precedes levy and other collection actions can be ad-
dressed naturally by introduction of states that correspond
to warranted cases and the unwarranted cases. The value of
issuing a warrant in an unwarranted state can then be fairly
assessed by considering the long term rewards obtained in
future (warranted) states, via subsequent collection actions
such as levy. The use of long term rewards as the objec-
tive employed in MDP is therefore essential for satisfactory
formulation of the collection process.

The constrained MDP formulation, beyond the standard
MDP, allows us to take into account the various constraints
that govern the actions under consideration. For exam-
ple, the value of a warrant now will likely depend on the
available resources for performing subsequent correspond-
ing actions such as levy. Estimating the value of an ac-
tion in a constrained MDP involves looking ahead into the
resources available at the future states, and the resulting
value function and corresponding optimized policy will be
better guided with respect to resource consumptions. In
addition to the resource constraints, the business and le-
gal constraints can also be handled by including them as
an additional type of constraints that define the set of legal
policies in the constrained MDP.

As described above, the proposed approach based on the
constrained MDP framework provides a comprehensive solu-
tion to the problem of collections optimization, which tightly
couples data modeling and constrained optimization in a
unified manner. Furthermore, it can accept input from rules
engine as constraints, and the output policy can be fed
into a rules engine. The approach thus allows us to in-
vert the typical roles played by the rules engine and ana-
lytics/optimization engine, and provide a nearly automated
system in which rules are fed as input to and output from
the analytics/optimization engine.

The remainder of the paper is organized as follows. We
first review some related work in the intersection of data
modeling and decision making. We will then describe the
constrained Markov Decision Process and Reinforcement Learn-
ing framework we employ in our approach. Next we present
the concrete algorithm we employ in our work, and also elab-
orate on the constrained optimization problem formulation.
We then describe the business problem we solve using this
approach in the actual deployment at NYS DTF and give
some evaluation results. Finally, we present further empiri-
cal evaluation of the proposed methodology, using data sets
from a different but related application domain.

2. RELATED WORK
The technical problem addressed in the present work is

that of tightly integrating data modeling and decision mak-
ing/optimization. When estimated models are used as in-
put to a subsequent decision making process, it is sometimes
desirable that the constraints that govern the execution of

those decisions be taken into account in the estimation pro-
cess itself. In the knowledge discovery and data mining liter-
ature, this issue has attracted considerable attention, with
notable examples being the body of work known as cost-

sensitive learning [16, 7, 20, 9, 6] and the emerging topic of
economic learning [12]. Past works in cost-sensitive learning
have established that, in many cases, the estimation pro-
cess can benefit from incorporating the cost information for
the actions taken as a result of the estimation. In the dy-
namic problem setting, attempts have been made to extend
cost-sensitive learning to sequential cost-sensitive learning,
formulating the problem using the Markov Decision Process
(MDP) framework [11]. The cost structure treated in the
past works, however, was in terms of a simple cost function.
In real world applications, it is often the case that various
constraints exist that restrict the space of permissible de-
cisions. It is natural, therefore, to extend the goal of cost
minimization to constrained cost optimization, in the con-
text of sequential cost-sensitive learning, and this is what
we do in the present work.

There exist some past works that investigated constrained
versions of Markov Decision Process (e.g. Altman [2]), but
our approach differs from this body of work in a key aspect.
In particular, in contrast to the earlier general formulations
in which the constraints are defined as a cost functional of
the entire state trajectory, we formulate the constraints as
being fixed and known at each learning iteration. This as-
sumption is one that we think is reasonable for the prob-
lem setting we consider (batch or population learning), and
we leverage the simplified formulation to arrive at a practi-
cally viable approach. These proposed methods, based on
constrained versions of (batch) reinforcement learning al-
gorithms, would not naturally fall out of the general con-
strained MDP formulation of the type studied in [2].

3. PRELIMINARIES

3.1 Markov Decision Processes
We begin with a brief description of the concepts of Markov

Decision Process (MDP) [13, 8, 14]. An MDP consists of the
state space, S, the action space A, initial state distribution
µ : S → R, and transition probability function τ : S × A ×
S → [0, 1] such that ∀s ∈ S, ∀a ∈ A

∑
s′∈S τ(s′|s, a) = 1,

and the expected reward function R : S × A → R. We let
τ(s′|s, a) denote the conditional probability of transition to
s′ upon taking action a in state s, and R(s, a) denote the ex-
pected reward for the same. For notational convenience, we
also let τ denote the random variable that takes on values
from S, according to τ , namely

∀s ∈ S, a ∈ A, τ(s, a) = s
′ with probability τ(s′|s, a)

Given an MDP, a policy π : S → A determines an agent’s
behavior in it. In particular, it determines an infinite se-
quence of state, action, and reward triples, 〈st, at, rt〉, t =
1, 2, ..., where the initial state s1 is drawn according to µ
and in general at time t, the action at is determined as
π(st) and reward rt is determined by R(st, at) and the next
state st+1 is determined by the state transition probability
τ(st+1|st, at). We also consider stochastic policies, proba-
bilistically mapping states to actions, namely π : S×A → R
such that ∀s ∈ S,

∑
π(s, a) = 1. Analogously to τ above,

for a stochastic policy π, we interchangeably let π(s) denote
the random variable assuming values from A according to



π. That is,

∀s ∈ S, π(s) = a with probability π(s, a)

In general, for any stochastic policy π, the value function for
π, denoted Vπ : S → R, is defined as the expected cumula-
tive reward when starting with a given state and following
policy π at every step in the future. Formally,

Vπ(s) = Eπ,τ [R(s, π(s)) + γVπ(τ(s, π(s)))]

where γ is a discount factor satisfying 0 < γ < 1. It is also
customary to define the following two-place variant of value
function, as a function of a state and an action.

Vπ(s, a) = Eπ[R(s, a) + γVπ(τ(s, a), π(τ(s, a)))]

It is well-known that for any MDP, there exists a policy π∗

that satisfies Bellman’s fix-point equation:

Vπ∗(s) = max
a∈A

E[R(s, a) + γVπ∗(τ(s, a))]

and such π∗ is optimal, namely

∀π, ∀s ∈ S, Vπ∗(s) ≥ Vπ(s)

It is also the case therefore that

∀π, Es∼µ[Vπ∗(s)] ≥ Es∼µ[Vπ(s)]

where Es∼µ denotes the expectation when s is distributed
according to µ. (In general, whenever it is clear from con-
text, we also use Eµ to denote the same.) It also holds that
the following alternative form of Bellman’s equation for the
two-place version of value function is satisfied by the optimal
policy.

Vπ∗(s, a) = max
a′∈A

E[R(s, a) + γVπ∗(τ(s, a), a′)]

The two-place value function was introduced by Watkins
[18], and is also known as the Q-value function. We use
both V and Q interchangeably in this paper.

The above fact gives rise to an iterative procedure known
as “value iteration”, which is stated below for the two-place
version of the value function. At step 1, for each state s ∈ S,
it initializes the value function estimates using the expected
immediate reward function R:

V1(s, a) = R(s, a)

At any of the subsequent iterations, t, it updates the value
function estimate for each state s and action a according to
the following update.

Vt(s, a) = Eτ [R(s, a) + max
a′∈A

γVt−1(τ(s, a), a′)]

It is known that the above procedure converges, and it con-
verges to the value function of an optimal policy.

3.2 Constrained MDP
A constrained MDP is an MDP, in which the policies un-

der consideration must belong to a set Π of permissible poli-
cies. In the standard constrained MDP, [2], Π is determined
with respect to a set of bounds on cumulative discounted
“costs”, defined analogously to the cumulative rewards. That
is, Πµ is a set of stochastic policies π : S ×A → [0, 1] adher-
ing to a set of n constraints of the form:

Es∈µ,π[

∞∑

t=0

γ
t
Ci,s,aπ(s, a)] ≤ Bi, i = 1, ..., n

where γ is some fixed positive discount factor, and for each
i, Ci,s,a denotes a cost incurred by taking action a in state
s.

The application domain that we target in the present con-
text possesses some characteristics that motivate us to mod-
ify the above, standard formulation. We are given a histor-
ical data set for a population of individuals with associated
states, distributed according to a certain distribution, and
are to use this data set to optimize the present day col-
lections resources. Furthermore, this state distribution will
likely remain relatively stable, since collection actions taken
now will not significantly alter the overall population mix-
ture of taxpayers. At any given point in time, there is a
fixed amount of resources, which can be allocated to actions
targeting this population, and these constraints need be ob-
served at all times, rather than cumulatively through the
course of the state trajectory.

These characteristics together motivate a modified formu-
lation of the constrained MDP, which is applicable to the
batch, population learning setting we consider. Formally,
we assume that the initial state distribution, µ, used in de-
termining the constraints, is in fact the stationary distri-
bution (for policy π) and arrive at the following simplified
formulation of the costs:

Es∈µ[Ci,s,aπ(s, a)] ≤ B
′
i, i = 1, ..., n

where in general the B′ are distinct from the B in the earlier
formulation.

With this simplified formulation, the constraints can now
be computed at each iteration of batch learning, provided we
have the knowledge of the distribution µ. Given the above
assumption of stability, µ can indeed be reasonably esti-
mated using the sampling distribution. As we will see in the
subsequent developments, this simplified formulation moti-
vates a family of algorithms that are relatively straightfor-
ward extensions of existing reinforcement learning methods,
and that are well suited to the present application scenario.

4. METHODOLOGY

4.1 Constrained Value Iteration and Q-Leanring
Given the above definition of constrained population MDP,

we consider the constrained value iteration procedure, anal-
ogously to the generic value iteration procedure described
in Section 3. At step 1, it initializes the value function esti-
mates for all of the states s ∈ S and actions as follows.

V1(s, a) = R(s, a)

At any of the subsequent iterations, t, it updates the value
function estimates for all the states s ∈ S as follows:

Vt(s, a) = Eπ∗

t ,τ [R(s, a) + γVt−1(τ(s, a), π∗
t (τ(s, a)))]

where π∗
t is determined by

π
∗
t = arg max

π∈Π
Eµ,π[R(s, a) + γVt−1(τ(s, a), π(τ(s, a)))]

Note, in the above, that the maximum is taken over policies
π restricted to the constrained policy class Π, which em-
phatically is known and computable at each iteration, due
to the simplified formulation.

Loosely based on the constrained value iteration proce-
dure described in the previous section, we can derive con-
strained versions for many known reinforcement learning



methods. Of these, we specifically consider the constrained
version of Q-learning.

The constrained Q-learning algorithm is essentially ex-
pressed by the following update equation, for each observed
state, action, reward and the next state sequence (s, a, r, s′):

Qk(s, a) = (1 − αk)Qk−1(s, a)

+αkEπ∗

k
[r + γQk−1(s

′
, π

∗
k(s′))] (1)

where

π
∗
k = arg max

π∈Π
Eπ[r + γQk−1(s

′
, π(s′))]

and k denotes the number of times the given state-action
pair (s, a) has been observed and updated. Note that Q-
value function is nothing but the two-place value function
we introduced in the previous section, but here we denote it
as “Q”, following the convention in describing Q-learning.

4.2 A Concrete Algorithm: Constrained Ad-
vantage Updating

While the generic description of constrained reinforcement
learning methods given in the foregoing section serves to mo-
tivate a family of methods, they require some modifications
and extensions to be useful in real world applications. One
critical issue is that of dealing with variable time intervals
between actions. Among the body of past works that ad-
dressed the problem of extending Q-learning and other re-
lated learning methods to variable time intervals and contin-
uous time setting [4, 5], the Advantage Updating algorithm,
due to Baird [4], is particularly attractive and has proven
effective in past applications [1].

Advantage updating is based on the notion of advantage

of an action a relative to the optimal action at a given state
s, written A(s, a):

A(s, a) =
1

∆ts

(Q(s, a) − max
a′

Q(s, a′)) (2)

In the above, ∆ts denotes the time interval between the state
s and the subsequent one. The notion of advantage is useful
because it factors out the dependence of the value function
on the time interval (by division by ∆ts), and relativizes the
influence of the state (by subtraction of maxa′ Q(s, a′)).

Given this notion of advantage, advantage updating is an
on-line learning method that learns this function iteratively,
by a coupled set of update rules for the estimates of A
and V , and a normalization step for A∗(s, a) which drives
maxa′ A∗(s, a′) towards zero. Although superficially it dif-
fers from the canonical Q-learning method, its central step
still involves choosing an action that maximizes the A-value
estimate. So, given the standard version of this algorithm,
its constrained version can be derived in a straightforward
manner by replacing the maximization by the appropriate
constrained optimization. We present pseudo-code for the
constrained (and batch) version of this algorithm in Figure 1.

4.3 Coupling constrained optimization with lin-
ear modeling

In a typical real world application, such as debt collection,
the state space is represented by a feature space involving
tens, if not more, of features. It is therefore practical to use
function approximation in the estimation involved in batch
reinforcement learning (c.f. [15]). This corresponds to the
use of a base regression method (Base) in the description

Procedure Constrained Advantage Updating
Premise:

A base learning module, Base, for regression is given.
Input data: D = {ei|i = 1, ..., N} where

ei = {〈si,j , ai,j , ri,j , ti,j〉|j = 1, ..., li}
(ei is the i-th episode, and li is the length of ei.)

1. For all ei ∈ D
1.1 For j = 1 to li, ∆ti,j = ti,j+1 − ti,j

2. For all ei ∈ D

D
(0)
i = {〈(si,j , ai,j),

ri,j

∆ti,j
〉|j = 1, ..., li}

3. A(0) = Base(
⋃

i=1,...,N D
(0)
i )

4. For all ei ∈ D and for j = 1 to li − 1, initialize

4.1 A
(0)
i,j = A(0)(si,j , ai,j)

4.2 π∗
(0) = arg maxπ∈Π

∑
i,j A(0)(si,j , π(si,j))

4.3 Aopt
(0)
i,j = A(0)(si,j , π

∗
(0)(si,j))

4.4 V
(0)

i,j = Aopt
(0)
i,j

5. For k = 1 to K

5.1 Set αk, βk and ωk, e.g. αk = βk = ωk = 1
k

5.2 For all ei ∈ D
For j = 1 to li − 1

A
(k)
i,j = (1 − αk)A

(k−1)
i,j

+αk(Aopt
(k−1)
i,j +

ri,j+γ
∆ti,j V

(k−1)
i,j+1 −V

(k−1)
i,j

∆ti,j
)

D
(k)
i = {〈(si,j , ai,j), A

(k)
i,j 〉|j = 1, ..., li − 1}

5.3 A(k) = Base(
⋃

i=1,...,N D
(k)
i )

5.4 For all ei ∈ D and for j = 1 to li − 1, update

A
(k)
i,j = A(k)(si,j , ai,j)

π∗
(k) = arg maxπ∈Π

∑
i,j A(k)(si,j , π(si,j))

Aopt
(k)
i,j = A(k)(si,j , π

∗
(k)(si,j))

V
(k)

i,j = (1 − βk)V
(k−1)

i,j

+βk(
Aopt

(k)
i,j

−Aopt
(k−1)
i,j

αk
+ V

(k−1)
i,j )

5.5 For all ei ∈ D and for j = 1 to li − 1, normalize

A
(k)
i,j = (1 − ωk)A

(k)
i,j + ωk(A

(k)
i,j − Aopt

(k)
i,j )

6. Output the final advantage model, A(K).

Figure 1: Constrained reinforcement learning based
on advantage updating.

of constrained batch advantage updating procedure in Fig-
ure 1.

The use of a segmented linear regression algorithm (e.g.
[3], [10]) for function approximation in the present context
leads to a practically viable method. In the case of the
constrained advantage updating algorithm, the advantage
values, A, are estimated using a segmented linear regression
model. That is, the A-model consists of a finite number of
segments, each defined by a conjunctive condition on the
features, and a linear regression model for that segment.
Using this model, the constrained optimization procedure
within blocks 4.2 and 5.4 in the algorithm description in
Figure 1 can be formulated as follows.

Let D = {(s, a, r)} denote the state-action-reward triples
in the input data. Let seg denote the segmentation func-
tion of the model, mapping states to their segments. Let X
denote the set of segments in the model. For each segment
x ∈ X, the advantage function is estimated as a linear re-
gression of the following form (denoted R to avoid confusion



with the set of actions A.)

R =
∑

a∈A

R(x, a) · M(x, a) + R(x, 0)

where R(x, a) is the regression coefficient for action a, R(x, 0)
is the intercept, and M(x, a) is the number of action a al-
located to segment x. Then the objective of optimization is
to maximize

∑

x∈X

∑

a∈A

R(x, a) · M(x, a)

subject to the following constraints (3), (4) on the resources
associated with the actions, namely,

∑

(s,a,r)∈D

∑

a′∈A

C(seg(s), a′) · M(seg(s), a′) ≤ B (3)

where C(seg(s), a′) denotes the cost of allocating a single
action a′ to segment seg(s) and B is a resource bound, and

∀x ∈ X,
∑

seg(s)=x

∑

a∈A

M(seg(s), a) = ♯(seg(s)) (4)

where ♯(seg(s)) denotes the size of the segment seg(s). Note
that the above is an equality because we consider inaction

as one of the actions. Given a solution to this optimization
problem, namely the action allocations M to each segment-
action pair, one can define the corresponding stochastic pol-
icy π∗ as follows:

∀s ∈ S,∀a ∈ A, π
∗(s, a) =

M(seg(s), a)

♯(seg(s))

Thus the linear regression formulation naturally reduces the
optimization problem to a linear program, resulting in a
practical algorithm that realizes constrained reinforcement
learning. In our deployment and in evaluation experiments,
we used IBM’s scalable segmented linear regression engine,
ProbE [3, 10], as our function approximator.

5. DEPLOYMENT AT NEW YORK STATE
DTF

A tax collection optimization engine based on the ap-
proach proposed in the present paper was implemented and
deployed as part of a larger collection management solution
at New York State Department of Taxation and Finance
(NYS DTF). In this section, we describe some aspects of
this deployed solution in detail, and discuss technical en-
hancements we devised in the actual deployment.

5.1 Business Problem Specification
We begin by briefly describing how the collections pro-

cess works at NYS DTF. The collection process starts on
a taxpayer when an upstream process (e.g. auditing) makes
the determination that a certain taxpayer has an outstand-
ing debt and an assessment is created on that taxpayer. At
that point, the taxpayer is unassigned, but soon following
the maturing of the assessment, the taxpayer is sent by de-
fault to the call center (CC). The case will belong to CC
for a certain period of time, and various contact and collec-
tion actions can be taken onto them (e.g. mailing, phone call,
warrant, levy, etc) either manually by CC staff or sometimes
automatically (for some of the actions). When determina-
tion is made that the collection process should be elevated
for a given case, for one reason or another, the case is moved

to a more specialized organization. These organizations are
categorized into those that handle certain specialized types
of cases, or the district offices (DO’s) that handle elevated
cases belonging to specific regions.

Given this overall flow of the collections process, the task
of the recommendation engine, based on our modeling and
optimization engine, is divided into the modeling phase and
the scoring (action allocation) phase. In the scoring phase,
it is given as input: (1) a set of collection actions under
consideration; (2) a set of modeling feature vectors for tax-
payers of interest; (3) a set of constraint feature vectors for
the same taxpayers, specifying for each taxpayer which of
the actions are permissible (obtained by applying business
and legal rules to their profile data); (4) a description of
the available resources in terms of man hours in each of the
multiple organizations; (5) a list of additional constraints in
terms of upper and lower bounds on the type of actions that
are performable; it is to output an optimized action alloca-
tion, mapping each of the taxpayers in (2) to a recommended
action.

In the modeling phase, the modeling/optimization engine
is given analogous input as above, except the modeling fea-
ture data (2) are historical sequences for a generally distinct
set of taxpayers than for action allocation, and it is to output
a series of models. In the scoring phase, the best model(s)
are chosen and used.

5.2 Actions and Resource Constraints
In the legacy system, the overall collections process is

guided via the notion of case assignment. When the as-
sessment is created, the case is initially “unassigned.” It will
then be assigned to Call Center (CC) when the assessment
matures. If the case is subsequently moved to any one of
the organizations mentioned above, the case is then consid-
ered “org assigned” (ORG). When the collection process is
completed on a case, the case is then “closed” (CLO). When
all possible means are attempted to no avail, then the case
can be “completed” (COM). In our deployment, we respect
the notion of case assignment, and consider cases in CC and
ORG to be owned by a particular organization. We have
accordingly designed the set of actions: We consider direct
collection actions that can be taken at one or the other of the
assigned organizations, and indirect or movement actions
that move cases from CC to one of the other organizations.
The set of actions being considered are listed in Table 1.
The first and third groups consist of direct actions and the
second the movement actions. The third group (i.e. “per-
form field visit”) is special in that it can only be performed
in district offices.

Resources are equated to the man hours available in vari-
ous organizations for performing the collection actions being
considered. For each of the actions we consider we have an
estimate of the expected amount of time required to perform
them from historical data (column 3 of Table 1), and these
are used in conjunction with the man hours in organizations
to determine the resource constraints. It is important to
note that direct actions consume resources from the organi-
zation that the case currently is assigned to, whereas indirect
actions, in and of themselves, do not consume any resources.
They will incur resources in their future organizations, how-
ever, which will be taken into account in evaluating the value
of a move to action, via the look-ahead mechanism inherent
in the constrained MDP framework. Additionally, we pro-



action description hours bound
Collection Actions
cntct tp ml contact taxpayer by mail 0.01 5000
cntct tp phn contact taxpayer by phone 0.14 2000
crt wrrnt create warrant 0.01 5000
crt ie create income execution 0.01 10
crt lvy create levy 0.09 5000
Movement Actions
mv to do move to district office 0 5910
mv to hivl move to high value team 0 330
mv to cvs move to collection vendors 0 340
mv to ice move to indiv. case enf. 0 100
Org Specific Action
prfrm fld vst perform field visit 0.625 5000
No Action
no actn take no action 0 100000

Table 1: Collection actions being considered, with
the hours it takes to perform them, and upper
bounds on their allocations specified per day.

vide a form of constraints to explicitly control the number
of allocations of move-to actions, which we call “move to
upper bounds.” (Table 1, column 4.) Since there is one uni-
fied action mv to do for the DO’s (unlike other specialized
organizations), we have an additional type of bounds to be
specified per DO. Table 2 lists some examples of the orga-
nizations we consider, with their associated resource limits,
as well as the move to upper bounds discussed above.

organization hours bound
High Value Team 97.5
Call Center 225
Collection Vendor Support (CVS) 60
Individual Case Enforcement (ICE) 82.5
DO 1 30 45
DO 2 105 150
DO 3 172.5 120
DO 4 67.5 75
etc...

Table 2: Example resource and move-to action con-
straints, specified per day.

5.3 Modeling Features
Given data consisting of the taxpayers’ background infor-

mation, their complete history of transactions (payments)
and collection actions taken onto them by DTF (contact
and collection actions), we generate, for each taxpayer/case,
a time stamped sequence of feature vectors at multiple sam-
pling (or evaluation) time steps, to be used as training data
in the constrained reinforcement learning procedure. In the
deployed system, we used approximately 200 modeling fea-
tures in all, some concrete examples of which are listed in
Table 3.

5.4 Legal and Business Constraints
In addition to the modeling features, the engine makes

use of another group of features called action constraints,
which are binary features specifying, for each of the actions
considered, whether or not the action is allowed on the case
at that time point, according to the business and legal rules.
The generation of these features are done by feeding the
modeling feature vectors to the rules engine containing a
catalog of approximately 300 business and legal rules that

feature description
Taxpayer features
num non rstrctd fin srcs num non-restricted financial sources
st inactv ind sales tax inactive indicator
num bnkrptcy flngs number of bankruptcy filings
Liability features
ttl liability blnc total liability balance
sum cllct asmts sum of collectible assessments
sum asmts avail to wrrnt sum assessments available to warrant
Transactional features
tax pd lst yr tax paid last year
num pymnts snc lst actn num of payments since last action
sum pymnts sum of payments to date
sum pymnts lst yr sum of payments last year
Collections features
num opn pfrctd wrrnts number of open perfected warrants
dys snc lst wrrnt pfrctd days since last warrant perfected

Table 3: Some example modeling features.

have been carefully constructed by the users. Table 4 shows
a small number of example action constraint rules in this
catalog.

Rule # Rule contents
Contact rules
502.12 A collection letter should not be sent to

a taxpayer whose mailing address is invalid
2000.1 A contact action should only occur for

a taxpayer with at least one open mature assessment
2005.9 A contact by mail must not be made for

a taxpayer with an active promise-to-pay 30 days.
Levy rules
2601 A levy is not allowed for a taxpayer unless

the taxpayer has at least one perfected warrant

Table 4: Example action constraint rules.

5.5 Micro-segments and Resource Optimiza-
tion

We modify the generic optimization problem formulation
given in Section 4 to the present scenario involving organi-
zations and action constraints as follows. First, we let valid

action be the bit vector obtained by concatenating all the
action constraint features, for each (case, time stamp) pair.
We then introduce the notion of micro-segment, which is
defined as a quadruple consisting of the modeling segment,
the organization owning the case at the time, the DO the
case would be sent to, and the valid action vector. We then
modify the optimization problem described in Subsection 4.3
by re-defining the seg(·) function to map state features to
the corresponding micro-segment, rather than the modeling
segment, and modify some of the constraints to depend on
the micro-segments. Here, micro-segments inherit the coef-
ficients of the corresponding modeling segments.

5.6 Enhancements to the Modeling Engine
In deploying our engine, we made a few extensions and

enhancements to the modeling engine. One extension that
is worth mentioning has to do with the way the segmen-
tation is done in the modeling engine. The regression tree
modeling engine we use (ProbE [3]) performs tree-based au-
tomatic segmentation of the feature space into a number of
segments, which are uniform with respect to the regression



of the objective function and large enough to admit suffi-
cient statistical significance. While automatic segmentation
is critical for our purposes, there is a motivation to guide the
segmentation process with some coarse segmentation that is
derived from the domain knowledge. For example, the stages
within the collections process, such as whether the case is
in the call center or in a district office, or whether the case
has been warranted, have a major impact on the way they
should be handled. We do exactly this, by forcing the top
level branchings according to a specified set of categorical
variables, and then given this initial segmentation, the rest
of segmentation is performed automatically. Specifically, we
force the initial branching according to a tailored categorical
variable we call “state”, which is defined by combining the
notion of case assignment and collection stage. See Table 5
for the definitions of some example states.

State # Definition
CCN Assinged to Call Center and unwarranted
CCW Assinged to Call Center and warranted
DON Assinged to district office and unwarranted
DOW Assinged to district office and warranted
CVS Assinged to CVS
CLO Closed
COM Complete
etc...

Table 5: The“state”variable for enforced branching.

5.7 Output Segments and Allocations
Some example segments output by the engine are exhib-

ited in Table 6. Some interesting observations can be made.
First, notice that the first segment (Segment 212), for which
many warrant actions are allocated, includes the condition
that num non rstrctd fin srcs (number of non-restricted fi-
nancial sources) is at least 1. This is in fact one of the
conditions for levy to be possible, and the fact that it is
included for a segment for which warrant is recommended
suggests that the look ahead mechanism of our reinforce-
ment learning method is working properly. Also note that
“state” equals “CCN”, which means the case has not been
warranted. Next, in the second segment (Segment 437) for
which mailing is recommended, we see the condition that
tax pd lst yr (tax paid last year) exceeds a certain thresh-
old amount. A plausible interpretation of this is that this
segment consists of taxpayers who have been paying and
will likely pay without having to take elevated and costly
collection actions. The third segment (Segment 341) is a
little more involved. We see that it is relatively high valued
(sum asmts avail to wrrnt exceeds a certain amount), and
have paid last year but not recently (tax pd lst yr exeeds a
threshold and num pymnts snc lst actn is less than 1), but a
significant debt amount remains and they appear collectible
(num non rstrctd fin srcs is at least 1, st inactv ind is 0,
and sum asmts avail to wrrnt exeeds a threshold.) It seems
reasonable that the engine recommends move to DO within
resource limits and no action to the rest of this segment.

5.8 Further Deployment Details
The architecture of the deployed system is schematically

depicted in Figure 2. The overall solution is deployed and
executed within a WebSphere process server (WPS) applica-
tion server. Data sources include the collections data, tax re-
turn data, as well as additional external data. They are used

Segment Definition Action Allocation
Segment 212
state = CCN 5103 crt wrrnt
and tax pd lst yr < $ X 152 no actn
and 1 <= num non rstrctd fin srcs
and 1 <= st inactv ind
and num pymnts snc lst actn < 1
etc...
Segment 437
state = DON 1004 cntct tp ml
and $ Y <= tax pd lst yr 77 mv to cvs
and sum pymnts < $ Z 141 no actn
and $ S <= sum pymnts lst yr
and ttl liability blnc < $ T
etc...
Segment 341
and state = CCN 201 mv to do
and $ X <= tax pd lst yr 1424 no actn
and num pymnts snc lst actn < 1
and $ V <= sum cllct asmts
and 1 <= num non rstrctd fin srcs
and st inactv ind < 1
and $ W <= sum asmts avail to wrrnt

Table 6: Example output model segments.

to compute summary information on the taxpayers, which
are stored as an intermediate representation referred to as
taxpayer profiles. The taxpayer profile exists as a single xml
document for each taxpayer in a DB2 database (indicaed as
‘TP Profile’ in Figure 2.) The profile records the history of
the taxpayer states using the temporal data model approach
suggested by Wang and Zaniolo [17], using transactional se-
mantics with a granularity of a day. A simple transform can
generate the state of the taxpayer as it was on any particular
day.

Numerous legacy systems generate events which are passed
to the engine by work-flow. Each event has an XSLT2 trans-
form that updates the taxpayer profile with the new infor-
mation. Each week, taxpayers that have had an event, and
those whose next review becomes due, are considered for
scoring (action allocation). They pass through a number
of transforms which check their suitability for scoring, ap-
ply prescriptive rules and generate the state features, giving
rise to the scoring data. An analogous process is used to
generate the training data of the constrained MDP proce-
dure, except in the latter case a sequence of state feature
vectors per taxpayer are generated, at a number of evalua-
tion points in the past. The two types of state feature data
are respectively indicated as ‘Taxpayer State (Current)’ and
‘Taxpayer State (History)’ in Figure 2. In total, taxpayer
profiles are computed for over 2 million taxpayers, but typi-
cally as training data for modeling, we use feature data for a
subset of them, in the order of a couple of hundred thousand
taxpayers, each with 5 to 10 state feature vectors per tax-
payer on the average, totally approximately 1 million data
records.

Following the modeling and scoring processes by the en-
gine, a few more steps happen prior to the actual action rec-
ommendations, which are performed by the module called
‘Action Hanlder’ in the figure. One complication of the
present domain is that actions on a taxpayer may depend
upon the state of other related taxpayers. When a profile
indicates a relationship, the related profiles are brought in
under an associations tag so that the models and rules can



IBM Research  /  Center for Business Optimization

Modeling and Optimization 
Engine

Actions

Other

System 1

System 2

System 3 

Event Listener

Event
Notification

Event
Notification

Event
Notification

< inserts >

TP Profile

Taxpayer State 
( Current )

Modeler
Optimizer

< input to >

State Generator

< input to >

Case Inventory 

< reads >

< input to >

Allocation Rules

Resource 
Constraints

< input to >

< inserts , updates >

Business Rules
< input to >

< generates >

Segment Selector Action 1 Cnt Action 2 Cnt Action n Cnt

1 C
1

 ̂C
2

V C
3

200 50 0

2 C
4 V C

1
 ̂C

7
0 50 250

TP ID Feat 1 Feat 2 Feat n
123456789  00 5 A 1500

122334456  01 0 G 1600

122118811  03 9 G 1700

Rule Processor
< input to >

< input to >

Recommended 
Actions

< inserts , updates >

TP ID Rec. Date Rec. Action Start Date

123456789  00 6/21/2006 A1 6/21/2006

122334456  01 6/20/2006 A2 6/20/2006

122118811  03 5/31/2006 A2

Action Handler
< input to >

New 
Case

Case Extract

Scheduler

< starts > < updates >

State

Time Expired

Event
Notification

< input to >

Taxpayer State 
History

State

TP ID State Date Feat 1 Feat 2 Feat n
123456789  00 6/1/2006 5 A 1500

122334456  01 5/31/2006 0 G 1600
122118811  03 4/16/2006 4 R 922

122118811  03 4/20/2006 9 G 1700

< inserts >

Feature Definitions

(XML)

(XSLT)

(XML)

(XML)

(XSLT)

Figure 2: Overall collections system architecture.

see the full picture. This also means that, after a recommen-
dation is generated for each taxpayer, conflicts may need be
consolidated with these relationships in mind. For example,
it may not be desirable to send related taxpayers to different
organizations. This adjustment is part of what is performed
by the module named ‘Rule Processor’ in the figure. Ad-
ditionally, there is a mechanism in place that can be used
to deploy two models in an incumbent/challenger paradigm,
until such time as there is sufficient statistical significance
to call a winner. The loser will be replaced by the winner
or a new model when available.

There are three types of users at NYS DTF. The first
type is the members of the IT department within DTF, who
are responsible for operating and maintaining the collections
optimization system. The second type is the project team,
of size ranging from 5 to 15, that represents the users of the
collections optimzation system, who perform validation of
the rules and output allocations, and oversee the process of
setting resource constraints and other inputs to the system.
The third is the actual collections agents who are directly
affected by the system’s recommended actions. Of these,
30 to 40 call center agents receive the recommended actions
via an application screen, whereas the hundreds of agents
in the specialized organizations get them indirectly via the
engine’s allocations to the respective organizations.

The engine itself is a result of multiple years of research
and development, and with all of its components, the rel-
evant efforts sum to about 5 million dollars in research in-
vestment, although some of the components (modeling and
optimization engines) are generic. Additionally, NYS DTF
invested approximately 4 million dollars for this engagement.
The software maintenance planning is underway by IBM
Global Business Services, as part of the assetization and
commercialization of the engine.

5.9 Lift Evaluation
A challenge in evaluating the performance of a data-driven

business optimization methodology is that we are typically
required to do so using only historical data, which was col-
lected using a different (sampling) policy. Here we employ
an evaluation method based on bias correction that allows
us to do so, essentially following [1].

A useful quantity to estimate is the expected cumulative
reward for a new policy π′, when sampled with respect to the
old (or empirical) policy π and state distribution µ, written
Rπ,µ(π′) and defined as follows.

Rπ,µ(π′) = Es∼π,µ[Ea∼π′(a|s)[Rπ(s, a)]]

We can estimate the above quantity using the sampling pol-
icy, with appropriate bias correction (c.f. [19]), in which the
observed reward is multiplied by the ratio between the prob-
abilities assigned to the observed action by the respective
policies

Rπ,µ(π′) = Es,a∼π,µ[
π′(a|s)

π(a|s)
[Rπ(s, a)]]

Note, in the above, that π′(a|s) is known since it is the
stochastic policy generated by the constrained reinforcement
learning procedure, but π(a|s) needs to be estimated from
the data, since we do not know the sampling policy explicitly.
In our evaluation, we estimate π using Laplace estimates in
each of the segments that were output by the segmented
linear regression algorithm used for function approximation
in the learning procedure.

Figire 3 plots the expected rewards of the collections poli-
cies output by our engine in a typical modeling run, as com-
pared to the sampling or DTF’s historical policy, as a func-
tion of the number of learning iterations. The advantage
over the sampling policy is significant, and the models ob-
tained over the learning iterations exhibit a steady improve-
ment.

6. EVALUATION ON OTHER DATA SETS
In order to assess the robustness of our proposed method-

ology, we applied our proposed method and evaluated its
performance on two other real world data sets.

6.1 The Data Sets
The first data set we use is based on the well-known dona-

tion data set from KDD Cup 1998, which is available from
the UCI KDD repository.1 This data set contains informa-
tion from direct mail promotions soliciting donations, and

1http://kdd.ics.uci.edu/
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Figure 3: Normalized expected rewards achieved by
the deployed method and the sampling policy are
plotted for six learning iterations.

contains demographic data as well as promotion history of
22 monthly campaigns, conducted over a two year period.
Following [11], we preprocessed this data set to obtain a
sequence of feature vectors that capture the state of an in-
dividual at the time of each campaign, resulting in many
features not explicitly present in the original data.

The second data set we use for our evaluation is the (pro-
prietary) marketing data from Saks Fifth Avenue, which was
used in a prior work [1]. We refer the reader to that refer-
ence for further details. We used a random sample of 5,000
customers out of 1.6 million customers in the original data
set, and generated a sequence of 68 states for each of them,
corresponding to 68 marketing campaigns, totaling 340,000
data records, half of which was used for training and the
other half reserved for evaluation.

6.2 Resource Constraints
The KDD Cup and Saks data sets do not explicitly pro-

vide information on constraints on actions, so we provided
them for our experimentation. In order to parallel the multi-
organization setting of our problem, we introduce the no-
tion of departments (or groups), where each individual (cus-
tomer) in the data is assigned to a department based on her
cumulative value to date. Resource constraints are then de-
fined as bounds on the number of actions that can be per-
formed by each department per unit time.

Table 7 provides information on the group definitions and
resource bounds we used for both data sets, along with the
number of instances in the training data assigned to each de-
partment, and the average reward generated by customers
in each department. The last column shows the amount of
resource bounds we assigned to each department in our ex-
periments. We note that the resource bounds were selected
to be approximately proportional to the department sizes.

6.3 Evaluation Results
The main comparison method is that of using a standard

reinforcement learning algorithm to estimate the values of
competing actions, and then using optimization only at the
time of action allocation.

Figure 4 exhibits the results of this comparison for both
data sets. What is plotted in the graph is actually the per-

Dept. def. in terms Average Resource
of cumul. reward (r) Size reward($) bound

r < 10 45,226 2.05 1,700
10 ≤ r < 40 37,068 0.53 1,200

r ≥ 40 3,962 1.00 150

(a) KDD Cup 98 data
Dept. def. in terms Average Resource
of cumul. reward (r) Size reward($) bound

r < 10 114,807 3.87 11,480
10 ≤ r < 250 28,605 6.89 2,860

r ≥ 250 26,588 33.38 2,660

(b) Saks data

Table 7: Summary of resources for KDD Cup data
and Saks data.

centage improvement over the sampling policy as a function
of the number of learning iterations. Since the evaluation
is stochastic in nature, we averaged the results over 10 ran-
domized runs. In both cases, we observe a significant im-
provement in performance for consecutive iterations of both
algorithms. This means that both of these approaches out-
perform the canonical approach of combining data modeling
and constrained optimization (without reinforcement learn-
ing), which is equivalent to the first iteration in both meth-
ods.2 Furthermore, we see that constrained reinforcement
learning out-performs unconstrained reinforcement learning
in later iterations in both cases. For the KDD Cup 98 data,
the difference in expected rewards for the final model, at ap-
proximately 4 % of the sampling policy’s rewards, is indeed
statistically significant based on a paired t-test (p < 10−7).
For the Saks data, the differences in performance by the
two methods, at iterations 3, 4, and 5, are very statistically
significant based on a paired t-test (p < 10−8).

We remark that the reward values in the experiments in-
volving KDD cup 98 data are not directly comparable to
those for the original cup task, due to different sets of fea-
tures involved and the presence of resource constraints. We
emphasize, however, that the first iteration of our method is
similar to the approach used by the cup winner, and hence
we have a competitive baseline.

7. CONCLUDING REMARKS
We have presented a novel approach to the debt collec-

tions optimization problem, and described an actual deploy-
ment. The system went live in December of 2009 and there
has been significant press coverage and attention (e.g. CNN
Money, NY Channel 1, etc.) It will take more time to assess
the actual monetary benefits, but the state expects savings
of about 100 million dollars in the next three years. This fig-
ure is arrived at by a relatively conservative estimate of the
lift at a few percentage points for the relevant portion of the
collections that are affected by the system, and considering
that the state’s overall annual collections revenue is in the
order of billion dollars. Non-monetary benefits should also
be emphasized - Since the deployed system is based on data
modeling, it will be able to adapt to environment changes
without significant extra labor or costs. Furthermore, its

2In our experiments, the value function estimates were ini-
tialized by the cumulative rewards observed in the data. So
the first iteration actually corresponds to modeling the ob-
served long term rewards and running constrained optimiza-
tion using the estimated models.



 0

 5

 10

 15

 20

 25

 5 4 3 3 2 1

%
 Im

pr
ov

em
en

t i
n 

ex
pe

ct
ed

 r
ew

ar
d

Number of iterations

constrained RL
unconstrained RL

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 4 3 3 2 1

%
 Im

pr
ov

em
en

t i
n 

ex
pe

ct
ed

 r
ew

ar
d

Number of iterations

constrained RL
unconstrained RL

Figure 4: Expected rewards achieved by the two
approaches on the KDD Cup 98 data (above), and
Saks data (below): Percentage improvement over
the sampling policy in expected rewards for each
method is plotted for five learning iterations.

effectiveness is expected to improve over the years as more
and more data are collected.
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